Skeletal muscle lipid metabolism in exercise and insulin resistance.
نویسنده
چکیده
Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids liberated from adipose tissue adhering to the muscle cells. The regulation of utilization of the different lipid sources in skeletal muscle during exercise is reviewed, and the influence of diet, training, and gender is discussed. Major points deliberated are the methods utilized to measure uptake and oxidation of LCFA during exercise in humans. The role of the various lipid-binding proteins in transmembrane and cytosolic transport of lipids is considered as well as regulation of lipid entry into the mitochondria, focusing on the putative role of AMP-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), and carnitine during exercise. The possible contribution to fuel provision during exercise of circulating VLDL-TG as well as the role of IMTG is discussed from a methodological point of view. The contribution of IMTG for energy provision may not be large, covering approximately 10% of total energy provision during fasting exercise in male subjects, whereas in females, IMTG may cover a larger proportion of energy delivery. Molecular mechanisms involved in breakdown of IMTG during exercise are also considered focusing on hormone-sensitive lipase (HSL). Finally, the role of lipids in development of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed.
منابع مشابه
Exercise and obesity-induced insulin resistance in skeletal muscle
The skeletal muscle in our body is a major site for bioenergetics and metabolism during exercise. Carbohydrates and fats are the primary nutrients that provide the necessary energy required to maintain cellular activities during exercise. The metabolic responses to exercise in glucose and lipid regulation depend on the intensity and duration of exercise. Because of the increasing prevalence of ...
متن کاملSkeletal muscle insulin resistance: roles of fatty acid metabolism and exercise.
The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and in...
متن کاملEffect of GH on human skeletal muscle lipid metabolism in GH deficiency.
Adult-onset growth hormone (GH) deficiency (GHD) is associated with insulin resistance and decreased exercise capacity. Intramyocellular lipids (IMCL) depend on training status, diet, and insulin sensitivity. Using magnetic resonance spectroscopy, we studied IMCL content following physical activity (IMCL-depleted) and high-fat diet (IMCL-repleted) in 15 patients with GHD before and after 4 mo o...
متن کاملمقایسهی دو شدت متفاوت تمرین استقامتی بر بیان پروتئین پریلیپین 3 عضلهی اسکلتی، سطوح سرمی گلوکز و انسولین موش صحرایی دیابتی شده با استرپتوزوسین
Background: Lipid metabolism disorder in muscle plays an important role in creating insulin resistance in skeletal muscle. Perilipin 3 (PLIN3) is one of PLIN proteins in regulation of muscle lipolysis. The purpose of this study was compared two different endurance training intensities on perilipin 3 protein expression in skeletal muscle, serum insulin levels and glucose in streptozotocin-induce...
متن کاملIrisin and Myonectin Regulation in the Insulin Resistant Muscle: Implications to Adipose Tissue: Muscle Crosstalk
Myokines are peptides produced and secreted by the skeletal muscle, with autocrine, paracrine, and endocrine actions. Many of them are overexpressed during physical exercise and appear to contribute to the benefits of exercise to metabolic homeostasis. Irisin, resulting from the cleavage of the membrane protein FNDC5, was shown to induce adipocyte browning, with increased lipid oxidation and th...
متن کاملTissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance.
Both pharmacological intervention (i.e., thiazolidinediones [TZDs]) and lifestyle modification (i.e., exercise training) are clinically effective treatments for improving whole-body insulin sensitivity. However, the mechanism(s) by which these therapies reverse lipid-induced insulin resistance in skeletal muscle is unclear. We determined the effects of 4 weeks of rosiglitazone treatment and exe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological reviews
دوره 86 1 شماره
صفحات -
تاریخ انتشار 2006